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Abstract

A finite-element analysis is carried out for small-amplitude free

vibration of laminated, anisotropic, rectangular plates having arbitrary

boundary conditions, finite thickness-shear moduli, rotatory inertia, and

bimodulus action (different elastic properties depending upon whether the

fiber-direction strain is tensile or compressive). The element has five

degrees of freedom, three displacements and two slope functions, per node.

An exact closed-form solution is also presented for the special case of

freely supported single-layer orthotropic and two-layer, cross-ply plates.

This provides benchmarks to evaluate the validity of the finite-element anal-

ysis. Both solutions are compared with numerical results existing in the

literature for special cases (all for ordinary, not bimodulus, materials) and

good agreement is obtained.

1Presently, Professor of Engineering Science and Mechanics, Virginia
Pol technic Institute and State University, Blacksburg, Virginia.

Presently, Structures Engineer, Lear Fan Corp., Reno, Nevada.
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Introduction

Structural uses have been increasing for laminates consisting of multi-

ple layers of fiber-reinforced composite materials. Consequently, there is

an increasing need for more realistic mathematical modeling of the material

behavior for incorporation into static and dynamic structural analyses.

Certain fiber-reinforced materials have been found experimentally to exhibit

quite different elastic behavior depending upon whether the fiber-direction

strain (ef) is tensile or compressive [1-3]. Examples of such materials are

tire cord-rubber, reinforced solid propellants, and some biological tissues.

Although the stress-strain behavior of such materials is actually curvilinear,

it is often approximated as being bilinear, with different slopes (elastic

properties) depending upon the sign of ef. Thus, they are called bimodulus

composite materials.

The limited number of previous analyses of bimodulus-material plates

were reviewed in [4-6j,'and all were limited to static analyses. Thus, it is

believed that the present work is the first vibrational analysis of such

plates. The present work is not limited to just thin plates of isotropic bi-

modulus material, rather it is applicable to moderately thick plates laminated

of orthotropic bimodulus material. Two formulations are presented and solved:

one is a mixed finite-element formulation with five degrees of freedom per

node, and the other is an exact closed-form solution.

Governing Equations

Mindlin's linear dynamic theory (7] of moderately thick plates was first

extended to plates laminated of ordinary (not bimodulus) monoclinic elastic

material by Yang, Norris, and Stavsky (YNS)[8]. Later, Wang and Chou [9)
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showed that a slightly different version of the YNS theory, presented by

Whitney and Pagano [10], is more accurate than the original version [8].

Here, this class of theory is extended to bimodulus-material laminates.

The origin of a Cartesian coordinate system is taken to be in the mid-

plane (xy plane) of the plate with the z axis being normal to this plane and

directed positive downward.

Using the fiber-governed symmetric material model introduced in [11),

we take the generalized Hooke's law for the in-plane action in each layer (L)

to be of the following bimodular form:

x Qllkl Ql2kX Ql6k f x

: Oy Ql2ki Q22ki Q26kx , y{l
{"xy rQl 6 kx Q26ki Q66ki J YxyJ

I Here the stresses (a xyT ) and engineering strains (C ,Yy) are denoted

x! xy x yxy

in the usual fashion, and the Q's are the plane-stress-reduced stiffnesses

(symmetric array). The first two subscripts of the Q's are those classically

used in anisotropic elasticity [12] and composite-material mechanics [13].

Here the third subscript (k) refers to the sign of the fiber-direction strain

(k1l for tension and k=2 for compression), and t refers to the layer number

(z=l,2,...,n, where n is the total number of layers).

It is assumed that the thickness-shear behavior is unaffected by bi-

modular action, thus

T YZ C44 y1 C4.5  Yyz (2)T xj LC45 C55jl xz
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The stress and moment resultants, each per unit length, are expressed

in terms of stresses as

h/2(N x N y A N xQ Y) = J-h/2 (Ox'OCyDYTx Tyz Y) dz (3)

fh/2

(Mx ,MyMxy) = Jah/2 (axay,Txy)z dz (4)

The displacement components, u, v, and w in the x, y, and z directions,

respectively, can be expressed in terms of mid-plane 
displacements u

0, v,

w0 and slope functions *x and ,y as:

u = u°(x,y,t) + zox(X,y,t) ; v = v°(x,y,t) + Zoy(X.yt)
(5)

w = w(x,y,t)

where t is time.

The constitutive equations for an unsymmetric cross-ply laminate are:

0' 0
Nx  All A12  0 B1, B12  0u

N A 12 A2 2  0 B12  B22 0 Vy

Nxy 0 0 A66  0 0 B66  vIx + (6)x, - ' (6)

M x 811 812 0 011 012 0 x

M B1 BZa 0 D17 D2 0
y *~

Mxy 0 0 B66 0 0 D6 6  *yIx + x~y

and

{y} S 0 WJ y (7)
Qx 0 S55 w~x + Ox
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Here differentiation is denoted by a comma, i.e., ),x a( )/ax.

and the extensional, flexural-extensional coupling, and flexural stlffnesses

of the laminate are defined by

h/2

(Ai=BD 1 j f-h/2 (Q1j)(lzz 2)dz (8)

W~j-l,2,6

Also, the thickness-shear stiffnesses of the laminate are defined by

Sl= K2C i=4,5 (9)

where the K are the thickness-shear correction coefficients, which can be

determined by various approaches, cf. [12].

In addition to performing the integrations in a piecewise manner from

layer to layer, one also has to take into consideration the possibility of

different elastic properties (tension or compression) within a layer. This

is explained in detail for a two-layer cross-ply laminate in Appendix A.

Taking into account the coupling and rotatory inertias, one can write

the equations of motion as follows:

Nx,x + Nxyy = Pu~tt + R* Xjtt

Nxyx +Nyy = Pratt + R*y,tt

x,x + Qy,y Pwtt (10)M +M -Q Rutt

x,x Mxyy x tt + tt

M + M .Q aRv?*xyx yy y tt y,tt

Here P, R, and I are the normal, coupling, and rotatory inertia co-

efficients per unit mid-plane area and are defined by



Jh/2

where p is the material density.

Substituting equations (6) and (7) into equations (10), we obtain the

equations of motion. In operator form, we have

00
v0  0

ELk) w = 0 (12)
NY 0

k,sx=1 2,3,4,5

where ELk) is a symmetric linear differential operator matrix with the

following elements:

L1 Alld 2+A 66d2,Pd~ 2 11 (A12 +A66)dd ;L 1  0

L1 (812 +B866)/h]dx d ; L15  (Bl1/h)d + (B66/h)d ,- (R/h)d2

L S J+Ad2 d LL2 22
122 A66'x+A22d,-d ; L23  0 ; 24  (B66/h)d x+(B22/h)d -(R/h)dt

L2S L14 ; L33 B S55d2- S44d2 +Pd 2

(13)

L34  -(S44./h) d ; L35 s-(Sss/h)dx

L4!D 6 h) 2 2+ D 2h 2 - (S44/h 2) (1/h 2)d 2
L4 D6h)x (2/ )dy t

L45  C((12 +D06r)/h 2J]d xd

55 (D11/h )d + (D/h)lSh
2 (/ 2 d ; a /ax$ etc.
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Application to Plate Freely Supported on all Edges

The boundary conditions on all edges are freely supported (simply sup-

ported without in-plane normal restraint).

Along the edges at x = 0 and x = a,

W = *Y =MX = 0
V 0 = Nx U 0

(14)
Along the edges at y = 0 and y a b,

W a Ox = My = 0

u =N = 0
y

Closed-Form Solution

The governing equations (12) and the boundary conditions (14) are

exactly satisfied in closed form by the following set of functions:

u° = U cos ax sin ay eiWt

v ° = V sin ax cos sY 
i~t

W = W sin ax sin By eiWt (15)

h = Y sin ax cos By ei~t

h*x = X cos ax sin BY elWt

Here, w is the natural frequency associated with the mode having axial and

transverse wave numbers m and n, and

aS mw/a , B flnw/b (16)

where a and b are plate dimensions in the x and y directions, respectively.

Substituting solutions (15) into the governing equations (12), we

obtain the following:
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U 0

V 0

CCkt] w 0 (17)

Y 0

L x 0

k,.t=1,2,3,4,5

where Ckx is a 5x5 symnetric determinant containing the following elements:

C 11 B - Ajja2-A 6 68
2 +pw2  ; C12 E- (A12 +A 66 )aS ; C1 3  0

C14 - [(Bl2 + B66)/h]o ; Cis - (Bj1/h)x2 - (B66/h)B2 + (R/h)w2

C2 2  - A6 6a
2 -A 2 20

2+pw2  ; C2 3  0

C24  - (866/h)az
- (B22/h)02 + (R/h)w2  ; C25  C14

(18)

C33  - (S55 c2+S4s
2-pw2) ; C34 - (S.4 Ih)s

C35 = - (S55/h)a ; C44 - ( 66/h
2)c2 - (D22/h

2 )02 - (S4 /h2) + (I/h2)w2

C45 = - [(D, 2 +D66 )/h
2 ]CJ

C55 = - (Djj/h2 )a2 - (o66/h2)0
2 - (S55/h

2)+ (I/h2)=2

The frequency w can be determined by setting ICkLI 0.

To determine the z-position of the fiber-direction neutral surface, one

sets

Ef = Ef + Z~f 2 0

or

Znf -" /Kf (19)

nf c
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Thus, Znx = - hU/X and Zny = - hV/Y. An iterative procedure is used to obtain

the final displacement ratios and corresponding frequency.

Finite-Element Formulation

An exact closed-form solution to equations (12) can be obtained only

under special conditions of geometry, edge conditions, loadings, and lamination.

Here we present a simple finite-element formulation which does not have any

limitations (except for those implied in the formulation of the governing

equations)[15].

Suppose that the region I is subdivided into a finite number N of sub-

regions: finite elements, 'Re (e-1,2,...,N). Over each element the general-

0 0
ized displacements (u ,v ,W**X*y) are interpolated according to

0 r 1 0 r 1  s 2
u = u i  , v Z v 101 ,*- 4

i ii
(20)

p 3 p 3

x xii , 9 y 8 y i i

where €i (c=l, 2,3 ) is the interpolation function corresponding to the i-th

node in the element. Note that the in-plane displacements, the transverse

displacement, and the slope functions are approximated by different sets of

interpolation functions. While this generality is included in the formu-

lation (to indicate the fact that such independent approximations are possible),

we dispense with it in the interest of simplicity when the element is actually
1 2 3

programmed and take =i = oi (r=s=p). Here r,s, and p denote the number

of degrees of freedom for each variable. That is, the total number of degrees

of freedom per element is 2r + s + 2p.
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Substituting equations (20) into the Galerkin integrals associated with

the operator equation (12), which must also hold in each element Res

JRe [LJ(W{ }dxdy = 0 (21)

and using integration by parts once (to distribute the differentiation

equally between the terms in each expression), we obtain

cK11]CK12][K'3][K4][K 5  {u} 0

[K22]EK 23I]K24][K2S] {vI 0

[K33 ][K 34 ][K 3 ] {w) = 0 (22)

Symmetric [K44][K 4 1] x1 0

.K55  tip } 0

where the {ul, {v), etc. denote the columns of the nodal values of u,v,

respectively, and the elements Kj (a,8=1,2,..,5) of the symmetric stiff-
*1 "

ness matrix are given by

K 66G= 0 25 - XO
K =a A=IGj + A66GY = B H + B22H .

(23

Ki =A 2G + S S x + S4 A . T

K1 =0 K 3 = DT D2

K4= Bi1H x + 86 'K 3 = S44ARY'j(23

K15 . B1 2Hxy + B66 Hy K = DJLT + D66Ty + S155 ?.
ijij jiIi1366i 13

K =2 AZ2Gy + A6,Gx~ K 45 = DTxy gD 6 T

23=0 s DT + DTU+ S44T?.
K55 i D66T 22 ~ '

K24_8 H + B12Hxy

_~ ~ i 66........ iwml
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where

G = t dxdy (i,j=l,2,...,r)
13 I i,*.~t dxdy(i,2.,r;j,,.,t

le

= 0 1 dxdy (i=l,2,...,r ; j=l,2,...,t)

M§!f = fI 2iejndd (i12.r ;j=l,2,...,s)In

e (24)

ijn = S2 2 dxdy (ij=l,2,...,s)

e

R e . i 3 dxdy (i=l,2,...,s ; j=l,2,...,t)

T~ = 0! dxdy (ij=l,2,...,s)

( ,n=O,x,y)

and Gij = 0j, etc. In the special case in which i 1 2 0 3i all of the

matrices in equations (24) coincide.

In the present study, elements of the serendipity family are employed

with the same interpolation for all of the variables. The resulting stiffness

matrices are 20 by 20 for this four-node element and 40 by 40 for the eight-

node element. Reduced integration [16] must be used to evaluate the matrix

coefficients in equations (23). That is, if the four-node rectangular element

is used, the lxl Gauss rule must be used in place of the standard 2x2 Gauss

rule to numerically evaluate the coefficients Ki.

Substituting solution (22) into equations (19), we get

e ue-e (Znx ,x/*x,x ; Zny -s Vy /0 yy (25)
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Numerical Results

Computations using the closed-form and finite-element solutions were

carried out on an IBM 370 computer. Since there is no previous analysis

for vibration of bimodulus plates, the present results could be compared

only with those for rectangular plates laminated of ordinary materials.

Comparisons with the fundamental-frequency results of Jones [17] for thin

plates and Fortier and Rossettos [18] for thick and thin plates are pre-

sented in Tables 1 and 2. It can be seen that the agreement is good.

As examples of some actual bimodulus materials, two composites used in

automobile tires, aramid-cord/rubber and polyester-cord/rubber, are selected.

The material properties used are listed in Table 3. These are based on the

experiments of Patel et al.*[2) and are the same data used in [62 with the

addition of the specific-gravity values, which were estimated on the basis

of the volume fractions. The numerical results for single-layer 0 ortho-

tropic and two-layer cross-ply plates are presented in Tables 4 and 5-6,

respectively. As can be seen from these tables, again the agreement is

good.

There may be a question regarding the effect of bimodulus action on

plate stiffness in different portions of each cycle. For example, Fig. 1

represents a single-layer bimodulus-material plate at the two extremes of its

deflection. Figure l(a) depicts the initial half cycle, during which the top

surface is in compression and the bottom in tension, thus causing the neutral

surface for cto be positive (zn > 0), i.e., below the plate midplane asufc o x tob oiie(nx , ,

certain distance. Figure l(b) depicts depicts the latter half cycle, during

which the top surface is now in tension and the bottom in compression, thus

bI
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causing znx to be negative, i.e., to fall above the plate midplane. However,

the absolute value of Znx is identical to its value in the first half cycle.

Thus, it can be concluded that the the frequency associated with the second

half cycle is identical to that of the first half cycle and either modal

shape, Fig. l(a) or l(b), will give the same computational result for the

natural frequencies.

Now consider a two-layer laminate with the bottom layer (layer t=l)

oriented at 0 degrees and the top layer (z=2) at 90 degrees; see Fig. 2.

Initially, as shown in Fig. 2(a), the neutral surface for e falls below the

interface, within the O-degree layer, while the neutral surface for Cy falls

above the interface, completely within the 90-degree layer. In the latter

portion of the cycle, Fig. 2(b), the ex neutral surface falls outside of

the O-degree layer, and the ey neutral surface falls outside of the 90-degree

layer. Thus, compressive properties are used for the entire O-degree layer,

and tensile ones for the 90-degree layer.

From the above considerations for a two-layer cross-ply laminate, it is

clear that the plate stiffnesses acting in the two portions of a cycle are

different and thus the associated frequencies are also different, except in

the case of a square plate. Denoting the frequencies associated with the two

portions of a cycle by w1 and W2, it can be shown from the standpoint of

energy conservation that the average frequency (w) over the entire cycle

must be given by

= ( 1  + w) (26)

Thus, the computational procedure used for a cross-ply plate is to calculate
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w, and W2 associated with modal shapes shown in Figures 2(a) and 2(b), respec-

tively, and then to apply equation (26).

Concluding Remarks

A finite element has been developed to analyze the small-deflection free

vibration of laminated, anisotropic, rectangular thick plates of bimodulus

material. The results obtained agree well with those of an exact, closed-form

solution derived for such a plate freely supported on all four edges. Thus,

it is concluded that the element has been validated and may be used for com-

putations involving more complicated boundary conditions.
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APPENDIX A

DERIVATION OF THE PLATE STIFFNESSES FOR TWO-LAYER

CROSS-PLY LAMINATE O BIMODULUS MATERIAL

In problems involving laminates comprised of bimodulus-material layers,

it is necessary to evaluate the integral forms involved in the definitions of

the plate stiffnesses, equation (8). The derivation presented here is for the

case of a two-layer cross-ply laminate.

Each layer is assumed to be of the same thickness, h/2, and the same

orthotropic elastic properties with respect to the fiber direction. Since

each layer is oriented at either O or 900 to the x axis, the laminate is also

orthotropic, i.e., there are no stiffnesses with subscripts 16 and 26. The

bottom layer is denoted as layer 1, i.e., L=l in Qijkt' and occupies the thick-

ness space from z=O to z=h/2, where-z is measured positive downward from the

midplane. The top layer is denoted as layer 2, i.e., i=2, and occupies the

thickness space from z=-h/2 to z=O.

In the first case derived here, it is assumed that the upper portion of

the top layer (L=2) is in compression (k=2 in Qijk ) in the fiber direction

and that the lower portion of the top layer is in tension (k-l), while the

inner portion of the bottom layer (t-l), from z-O to Z=Znx, is in compression

(k=2), while the outer portion (from Znx to h/2) of layer 1 is in tension

(k-l).

Thus, the general integral expression for Aij, in equation (8), may be

taken as the sum of the integrals for each of these regions:

17
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Case I
(0.5 z> > 0, -0.5 < ZY < 0)

rh/2
A * f-h/2 Q ijkYd

f z -h/ QiJ 22 dz + j 0 Qij 12 dz + fz Qij 21 dz + Jh/ Q1j 11 dz (A-1)
fl2 y 0znx

Since the planar reduced stiffnesses ijlare each respectively constant

in the appropriate regions, equation (A-i) integrates to the following result:

A =i (Qij 22 + Qijll)(h/2) + (Q ii21 - Qjlzn

+ (Qij 22 - Qijl2)zny (A-2)

or

A - (l/2)(Qij 22 + Qil)+(i~ - Qjl.x

+ (Q1j 22 - Qijl2)Zy (A-3)

Similarly

B * 1 -h/2 zQijkLt dz

a '-h/ zQij 22 dz + J zQiJ12 dz + J n zQij21 dz + fh/ zQijll dz (A-4)-h2fny f nx

QiJ2- + Qijll)(h 2/8) + (Qij 21 - Qijll)(znX2/2)

(A-5)

+ (Qj2- il (n2)

or
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B = (1/8)(- Q j22 + Q ijl) + -Qj~ Q1i 11 )(ZX2/2)

+ CQ1j 22 - il)Z2)(A6

Also

h/2

(* j2 + Qijl 1)(h3/24) + (Qij 21 - Qijnl)(znx3 /3)

+.(Qj22- Qj,2)Zny/3)(A-8)

or

D~I/h 3 = (1/24.)(Qij 22 + Qil)+ (Qij2l - QijllO(ZX3/3)

+ (Qij22 - Q1j,2)(ZY
3/3)(A9

Similarly

Case 2
C-0.5 < Zx< 0, 0.5 > Zy > 0)

Aij/h U(QijlI + Qij 2 2 )/2 +(Qij 22 -Qiji 2)Z + (Qij2i Qijl 1)Zy

BD1j/h2 (Q U11 +Qij 22)/+ (Qij 22-Q1 12) (ZX2/)+ (Qj2l -Qij 11)( ZY/2) (-0
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Case 3
(0.5> ZX, , 0.5> Z y>0)

Ai /h (Q ijll + Qij 22 )/2 + (Qij21 "ijll)Zx

B i/h 2 = (Qijll - Qij22 )/8 + (Qij2" Qij11)(Zx2/2) (A-Il)

D ij/h3 = (ijl + Qij22 )/24 + (Qij 21 " jll)(Zx3/3)

Case 4
(-0.5 < Zx < 0, -0.5 < Zy < 0)

Aij /h =(Q ijl + Qij 22)/2 + (Qij22 "Qij2)Zy

Bij/h2 =(Qijll - Qij22 )/8 + (Qij22 Qijl2)(Zy2/2) (A-12)

D i/h 3 = (Qijll + Qij22)/24 + (Qij22 " QiJ1 2 )(Zy
3/3)

In the presence of excessively high in-plane loads, such as those due to

excessive heating of the midplane or due to large deflections, the neutral

surfaces can go outside of the thickness of the laminate and, thus, make it

act as it were homogeneous. However, this does not occur for small-deflection

free vibrations and thus the equations for these cases are not presented

here.

Single 00 Laer
(1Zxl < 0.5)

Aij /h "(Qijll + Qij2l )/2 + (Qij2- Qijl)Zx

Bt /h2  (Q-J1 " QiJ 21)/8 + ( QtjI)Zx2/2  (A-13)

DOii=/h3 (Qijll + QiJ21 )/24 + (Qij21 Qijll)Zx 3/3
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Table 1. Comparison of fundamental natural frequencies (m=n=l) of rectangular
antisymmetric cross-ply plates at different aspect ratios and thick- .
nesses (Ell/EZ2=40, G12/E22=G1 3/E22=G23/E22-0.5, v12=0.25, K2 K2-5/6)

Dimensionless frequency w(b/) 2(P/D22)Aspect

Ratio b/h=50 b/h=1O
a/b Thin-plate

theory [17) C.F. F.E. C.F. F.E.

0.5 2.24 2.400 2.421 1.942 1.946
1.0 0.865 0.858 0.877 0.794 0.799

1.5 0.65 0.656 0.668 0.612 0.615

2.0 0.606 0.604 0.617 0.565 0.569
2.5 0.59 0.590 0.599 0.548 0.552

3.0 0.580 0.578 0.591 0.541 0.544

C.F. denotes the closed-form solution and F.E. denotes the finite-
element solution.

Table 2. Comparison of fundamental natural frequencies of square anti-
symmetric cross-ply plates at different thicknesses (Ell/E 22=40,
G12/E22=G13/E22=1, G23/E22=0.5, v,2-0.25, K2-K2-5/6)

b/h Dimensionless frequency wb
2(P/E22h

3)

Fortier & Rossettos (18] C.F. F.E.

10 10.80 11.11 11.15

50 11.65 11.82 12.06

L •
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Table 3. Material properties for two tire-cord/rubber,.
unidirectional, bimodulus composite materials4

Aramid-Rubber Polyester-Rubber

kl k=2 k=l k-2

Longitudinal Young's modulus, GPa 3.58 0.0120 0.617 0.0369

Transverse Young's modulus, GPa 0.00909 0.0120 0.00800 0.0106

Major Poisson's ratio, dimensionless 0.416 0.205 0.475 0.185

Longitudinal-transverse shear modulus, GPaO 0.00370 0.00370 0.00262 0.00267

Transverse-thickness shear modulus, GPa 0.00290 0.00499 0.00233 0.00475

Specific gravity, dimensionless 0.970 1.00

a
Fiber-direction tension is denoted by k=l, and fiber-direction compression

by k=2.
bIt Is assumed that the minor Poisson's ratio is given by the reciprocal

relation.
It is assumed that the longitudinal-thickness shear modulus is equal to

this one.

f
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Table 4. Dimensionless fiber-direction neutral-surface locations
and fundamental frequencies for single-layer 00 ortho-
tropic plates having b/h=10 by two methods (closed form
and finite element)

Aspect Z nx/h ub2(P/E 2h3)k

Ratio
a/b C.F. F.E. C.F. F.E.

Aramid-Rubber:

0.5 0.4484 0.4484 19.065 19.255

0.6 0.4484 0.4475 14.339 14.564

0.7 0.4467 0.4468 11.324 11.515

0.8 0.4467 0.4458 9.304 9.553

0.9 0.4445 0.4450 7.893 8.019

1.0 0.4433 0.4435 6.877 7.062

1.2 0.4404 0.4413 5.554 5.782

1.4 0.4373 0.4370 4.766 4.968

1.6 0.4338 0.4340 4.263 4.443

1.8 0.4301 0.4338 3.925 4.092

2.0 0.4262 0.4302 3.688 3.856

Polyester-Rubber:

0.5 0.3089 0.3083 25.134 23.136

0.6 0.3089 0.3076 19.110 18.046

0.7 0.3072 0.3071 15.058 14.421

0.8 0.3072 0.3064 12.226 11.955

0.9 0.3056 0.3056 10.180 10.023

1.0 0.3056 0.3049 8.668 8.648

1.2 0.3030 0.3031 6.647 6.698

1.4 0.3011 0.3013 5.421 5.533

1.6 0.2990 0.2997 4.643 4.796

1.8 0.2969 0.2977 4.128 4.265

2.0 0.2945 0.2950 3.777 3.918

...... . .- _ _



24

Table 5. Dimensionless neutral-surface locations in the first and second portions
of a cycle for two-layer, cross-ply plates having b/h=l0 by closed-form
and finite-element methods*

Zx(1) Zy(I)  Zx(2) Z(2)

x y x y

a/b C.F. F.E. C.F. F.E. C.F. F.E. C.F. F.E.

Aramid-Rubber:

0.5 0.4457 0.4458 -0.0648 -0.0660 -0.0171 -0.0170 0.4247 0.4257

0.6 0.4446 0.4446 -0.0563 -0.0554 -0.0206 -0.0205 0.4303 0.4309

0.7 0.4434 0.4436 -0.0490 -0.0491 -0.0240 -0.0238 0.4338 0.4344

0.8 0.4421 0.4421 -0.0432 -0.0429 -0.0275 -0.0274 0.4363 0.4365

0.9 0.4408 0.4408 -0.0385 -0.0386 -0.0311 -0.0306 0.4381 0.4379

1.0 0.4394 0.4394 -0.0347 -0.0344 -0.0347 -0.0346 0.4394 0.4394

1.2 0.4366 0.4366 -0.0293 -0.0289 -0.0424 -0.0416 0.4412 0.4415

1.4 0.4335 0.4337 -0.0250 -0.0249 -0.0494 -0.0497 0.4423 0.4426

1.6 0.4301 0.4302 -0.0218 -0.0217 -0.0565 -0.0559 0.4423 0.4433

1.8 0.4265 0.4264 -0.0193 -0.0193 -0.0635 -0.0662 0.4437 0.4437

2.0 0.4228 0.4237 -0.0174 -0.0175 -0.0705 -0.0700 0.4437 0.4442

Polyester-Rubber:

0.5 0.3687 0.3691 -0.1335 -0.1295 -0.0830 -0.0825 0.3569 0.357

0.6 0.3675 0.3677 -0.1213 -0.1203 -0.0844 -0.0844 0.3588 0.359

0.7 0.3664 0.3663 -0.1119 -0.1113 -0.0868 -0.0868 0.3603 0.360

0.8 0.3653 0.3653 -0.1050 -0.1049 -0.0895 -0.0895 0.3615 0.362

0.9 0.3642 0.3641 -0.0999 .-0.0999 -0.0926 -0.0927 0.3615 0.362

1.0 0.3632 0.3633 -0.0960 -0.0960 -0.0959 -0.0959 0.3631 0.363

1.2 0.3611 0.3611 -0.0906 -0.0905 -0.1033 -0.103 0.3631 0.364

1.4 0.3589 0.3596 -0.0870 -0.0870 -0.1115 -0.112 0.3648 0.365

1.6 0.3565 0.3564 -0.0846 -0.0844 -0.1202 -0.120 0.3648 0.365

1.8 0.3540 0.3538 -0.0829 -0.0829 -0.1294 -0.130 0.3648 0.366

2.0 0.3514 0.3513 -0.0817 -0.0817 -0.1389 -0.139 0.3660 0.366

Here Z1 Znx/h for the first portion of a cycle, etc.
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Table 6. Dimensionless fundamental frequencies in the first partial cycle,
second partial cycle and complete cycle of motion for two-layer,
cross-ply plates having b/h=l0 by closed-form and finite-element
methodst

w1b2(P/E22h
3 ) w2b2(P/EC2h

3 ) wb2(P/E 2h3)

a/b C.F. F.E. C.F. F.E. C.F. F.E.

Aramid-Rubber:

0.5 19.38 20.23 13.88 14.55 16.18 16.93

0.6 14.65 15.32 11.05 11.69 12.60 13.26

0.7 11.60 12.17 9.353 9.807 10.35 10.86

0.8 9.537 9.825 8.269 8.635 8.860 9.192

0.9 8.088 8.488 7.543 7.879 7.806 8.172

1.0 7.038 7.386 7.038 7.364 7.038 7.375

1.2 5.661 5.928 6.402 6.727 6.008 6.302

1.4 4.838 5.045 6.037 6.356 5.371 5.625

1.6 4.313 4.536 5.812 6.088 4.951 5*199

1.8 3.960 4.116 5.655 5.910 4.658 4.852

2.0 3.712 3.909 5.551 5.821 4.449 4.677

Polyester-Rubber:

0.5 19.12 19.81 15.95 16.61 17.39 18.07

0.6 14.42 14.98 12.26 12.79 13.25 13.80

0.7 11.43 11.92 10.04 10.45 10.69 11.14

0.8 9.435 9.855 8.632 9.014 9.016 9.416

0.9 8.059 8.421 7.711 8.144 7.881 8.280

1.0 7.084 7.406 7.085 7.394 7.085 7.400

1.2 5.856 6.111 6.337 6.613 6.081 6.352

1.4 5.164 5.407 5.928 6.193 5.520 5.773

1.6 4.748 4.986 5.694 5.928 5.178 5.416

1.8 4.485 4.693 5.543 5.778 4.958 5.179

2.0 4.310 4.518 5.435 5.688 4.807 5.036

tHere w, and w2 denote the frequencies corresponding to the first and

second portions of a cycle, respectively, and w denotes the effective frequency
for an entire cycle.
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(a) First half cycle (b) Second half cycle

Fig. 1 Bimodulus action during the two half cycles of motion of a single-
layer bimodulus plate. Shaded material is in longitudinal tension.

Ey 0
Ex 0

zx 0
E y 0

(a) First portion of cycle (b) Second portion of cycle

Fig. 2 Bimodulus action during the two portions of motion of a two-layer
plate In the fundamental mode of vibration. Bottom layer is in
x direction (00), top layer is in y (900). Shaded portions are in
tension in the respective fiber directions.
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